jueves, 29 de noviembre de 2012


Colisionador de Hadrones LHC:

El Gran Colisionador de Hadrones, GCH (en inglés Large Hadron Collider, LHC) es un acelerador y colisionador de partículas ubicado en la Organización Europea para la Investigación Nuclear (CERN, sigla que corresponde a su antiguo nombre en francés: Conseil Européen pour la Recherche Nucléaire), cerca de Ginebra, en la frontera franco-suiza. Fue diseñado para colisionar haces de hadrones, más exactamente de protones, de hasta 7 TeV de energía, siendo su propósito principal examinar la validez y límites del Modelo Estándar, el cual es actualmente el marco teórico de la física de partículas, del que se conoce su ruptura a niveles de energía altos.
Dentro del colisionador dos haces de protones son acelerados en sentidos opuestos hasta alcanzar el 99,99% de la velocidad de la luz, y se los hace chocar entre sí produciendo altísimas energías (aunque a escalas subatómicas) que permitirían simular algunos eventos ocurridos inmediatamente después del big bang.
El LHC es el acelerador de partículas más grande y energético del mundo.1Usa el túnel de 27 km de circunferencia creado para el Gran Colisionador de Electrones y Positrones (LEP en inglés)


La teoría de cuerdas
La teoría de cuerdas es un modelo fundamental de la física que básicamente asume que las partículas materiales aparentemente puntuales son en realidad "estados vibracionales" de un objeto extendido más básico llamado "cuerda" o "filamento".
De acuerdo con esta propuesta, un electrón no es un "punto" sin estructura interna y de dimensión cero, sino un amasijo de cuerdas minúsculas que vibran en un espacio-tiempo de más de cuatro dimensiones. Un punto no puede hacer nada más que moverse en un espacio tridimensional. De acuerdo con esta teoría, a nivel "microscópico" se percibiría que el electrón no es en realidad un punto, sino una cuerda en forma de lazo. Una cuerda puede hacer algo además de moverse; puede oscilar de diferentes maneras. Si oscila de cierta manera, entonces, macroscópicamente veríamos un electrón; pero si oscila de otra manera, entonces veríamos un fotón, o un quark, o cualquier otra partícula del modelo estándar. Esta teoría, ampliada con otras como la de las supercuerdas o la Teoría M, pretende alejarse de la concepción del punto-partícula.

COSMOLOGÍA

Cosmología, del griego κοσμολογία («cosmologuía», compuesto por κόσμος, /kosmos/, «cosmos, orden», y λογια, /loguía/, «tratado, estudio») es el estudio del universo en su conjunto, en el que se incluyen teorías sobre su origen, su evolución, su estructura a gran escala y su futuro.

teoría del big bang
                                            
La teoría del Big Bang fue construida a partir de las contribuciones de Einstein y el astrónomo holandés Willem de Sitter (1917), el físico y matemático belga Georges Lemaitre (1948), el matemático ruso Alexander Friedmann (1922), y por el físico ruso George Gamow y sus dos colegas norteamericanos Robert Herman y Ralph Alpher de la universidad de George Washington. Refinamientos posteriores al modelo mostraron que éste es más preciso si se introduce un mecanismo de"inflación" que genera un crecimiento acelerado del radio del universo haciendo que crezca, en una fracción de segundo, de un valor de una diez millonésima parte del radio de un protón al valor de cien millones de años luz.
La hipótesis inflacionaria, propuesta originalmente en 1980 por Alan H. Guth del MIT y por Andrei D. Linde del Instituto Lebedev de Ciencias Físicas de Moscú, ha sido desarrollada hasta el punto de ser aceptada como elemento esencial del Big Bang ya que resuelve sus más graves problemas.
El Big Bang tiene dos problemas serios:
  • El problema de la causalidad (o problema del horizonte): El valor promedio de la temperatura de la radiación cósmica de fondo es el mismo en todas las direcciones. ¿Por qué sucede esto? Según el Big Bang, dos puntos de la esfera celeste separados por más de 2 grados jamás pudieron estar en contacto en el pasado (esto debido a que la velocidad de la luz es finita). Para que el fondo de radiación entre en equilibrio a la misma temperatura es necesario que todos sus puntos puedan tener contacto térmico.
  • El problema de la planitud: Para entender los argumentos expuestos en esta sección se recomienda ver primero la definición del parámetro de densidad (Omega en el alfabeto griego). La densidad del universo que observamos hoy es muy cercana a la densidad crítica (es decir  = 0.2 - 1.0). Las ecuaciones de la teoría de la Relatividad General indican que si el parámetro  comenzó con un valor de 1, entonces este valor se mantiene constante a medida que el universo se expande. Pero si al comienzo,  es diferente de 1 con la expansión  se aleja rápidamente de su valor inicial y por lo tanto se esperaría que el valor de  actual sea muy diferente a 1. En resumen,  debe ser exactamente 1 o muy lejos de 1. Esto se debe a que las ecuaciones para la evolución de omega dan una solución de equilibrio inestable en torno al valor de 1. Entonces, ¿Cómo es posible que hoy  sea tan cercano a 1? La geometría del universo es plana para  = 1, de ahí el nombre “Planitud”).

  Modelo inflacionario

A continuación se enumeran los fundamentos y las consecuencias del marco teórico inflacionario desarrollado por Guth, Starobinsky y Linde:

·         El universo que observamos es apenas una fracción del universo entero. Con la inflación el espacio se expande aceleradamente, la parte del universo que podemos observar está limitada por la velocidad finita de la luz. Estamos en el centro de una esfera (de radio = edad del universo * velocidad de la luz) más allá de la cual no podemos saber nada. Este límite se llama el horizonte.
·         La inflación explica el origen del universo a partir de la nada (vacío). Si consideramos la naturaleza cuántica de la materia y los campos el vacío no es una entidad carente absolutamente de energía. El principio de incertidumbre de Heisemberg permite la aparición repentina de pares partícula-antipartícula que rápidamente desaparecen. La existencia de estos pares virtuales forma una presión negativa (esta posibilidad se llama el efecto Casimir y ha sido verificada experimentalmente).
·         En la teoría de la Relatividad General no solamente la densidad de masa es fuente de atracción gravitacional. La gravedad resulta de la suma de la densidad de masa (energía) y la presión. Si esta suma es positiva la gravedad es atractiva (como lo decía Newton), y si la suma es negativa la gravedad es repulsiva.
·         En el modelo inflacionario el universo al comienzo del tiempo pasa por una época en la que el vacío provee suficiente presión negativa para provocar una expansión acelerada del espacio. Esta burbuja puede brotar espontáneamente a partir del vacío por un proceso que en mecánica cuántica se llama efecto “túnel”.
·         El problema del horizonte desaparece con la inflación ya que toda la región del universo a la que tenemos acceso proviene de una región muy pequeña antes de la inflación dentro de la cual todas sus partes estaban en contacto causal.
·         El problema de la planitud también queda resuelto con la inflación. El proceso de la expansión acelerada hace que la curvatura del espacio tienda siempre hacia una geometría plana (W = 1). Este proceso es similar a lo que ocurre cuando inflamos un globo hasta alcanzar un tamaño muy grande, por ejemplo si nos imaginamos que la Tierra es el globo inflado podemos apreciar que a escalas humanas la curvatura de la Tierra es imperceptible (la Tierra parece plana).
·         El modelo explica el espectro de perturbaciones primordiales en la distribución de mater

Quasares

Los quasares son astros difíciles de estudiar, ya que se encuentran muy alejados tanto en el espacio como en el tiempo. Se nos presentan tal como eran hace miles de millones de años, cuando la luz que nos llega de ellos inició su largo viaje. Sin embargo muestran bastante analogía con las galaxias de núcleos activos, especialmente por el tipo de radiación. Los quasares son fuentes de intensa emisión de energía en rayos X, el ultravioleta, la región visible, la porción infrarroja del espectro y en la región de la radio emisión, es decir su emisión es intensa en todo el espectro electromagnético, de lo que se observa, se ha llegado a la conclusión de que el origen de esta emisión no es el resultado de estrellas.
La intensa radiación de energía proviene de procesos no térmicos, es decir no se corresponde con la emisión de energía de cuerpos celestes que siguen la ley de Planck, como son las estrellas, sino de otros fenómenos físicos como la radiación sincrotrón que se trata de emisión de energía por parte de electrones que se mueven a muy alta velocidad en el seno de campos magnéticos.

relación entre los quásares y las galaxias

Los cuásares son galaxias con núcleos extremadamente energéticos. La cantidad de radiación emitida por tales núcleos opaca la luz del resto de la galaxia, de forma que sólo técnicas de observación especiales pueden revelar la existencia del resto de la galaxia. El núcleo explica por qué los cuásares se parecen a estrellas - todo lo que podemos ver es el motor central brillante-.

Características de la Vía láctea



La Vía Láctea es una galaxia espiral en la que se encuentra el sistema solar y, por ende, la Tierra. Según las observaciones, posee una masa de 1012 masas solares y es una espiral barrada; con un diámetro medio de unos 100.000 años luz, se calcula que contiene entre 200 mil millones y 400 mil millones de estrellas. La distancia desde el Sol hasta el centro de la galaxia es de alrededor de 27.700 años luz (8,5 kpc, es decir, el 55 por ciento del radio total galáctico). La Vía Láctea forma parte de un conjunto de unas cuarenta galaxias llamado Grupo Local, y es la segunda más grande y brillante tras la Galaxia de Andrómeda (aunque puede ser la más masiva).
El nombre Vía Láctea proviene de la mitología griega y en latín significa camino de leche. Ésa es, en efecto, la apariencia de la banda de luz que rodea el firmamento, y así lo afirma la mitología griega, explicando que se trata de leche derramada del pecho de la diosa Hera. Sin embargo, ya en la Antigua Grecia un astrónomo sugirió que aquel haz blanco en el cielo era en realidad un conglomerado de muchísimas estrellas. Se trata de Demócrito (460 a. C. - 370 a. C.), quien sostuvo que dichas estrellas eran demasiado tenues individualmente para ser reconocidas a simple vista. Su idea, no obstante, no halló respaldo, y tan sólo hacia el año 1609 de la era común, el astrónomo Galileo Galilei haría uso del telescopio para observar el cielo y constatar que Demócrito estaba en lo cierto, ya que adondequiera que mirase, aquél se encontraba lleno de estrellas

Características principales de las galaxias.

• Las galaxias son los mayores conjuntos de estrellas en el universo. En una galaxia, billones de estrellas están unidas por la atracción gravitacional mutua. El Sol reside en la galaxia Vía Láctea.
• Las galaxias vienen en distintos tamaños: galaxias enanas, galaxias promedio, y galaxias masivas. La Vía Láctea es una galaxia espiral promedio. Tiene dos galaxias satélite que la orbitan. Estas galaxias enanas irregulares son la Pequeña y la Gran Nubes Magallánicas, descubiertas por el explorador Magallanes.
• El más simple sistema de clasificación de galaxias, inventado por Edwin P. Hubble, clasifica las galaxias como espirales, elípticas, o irregulares en forma.
• Las galaxias espirales tienen características físicas inconfundibles. Los brazos de la espiral definen un plano. Una gran concentración de estrellas el centro de la galaxia forma un bulto allí. Las galaxias espirales son ricas en el gas y polvo necesario para formar nuevas estrellas. Su color azul dice a los astrónomos que la formación de estrellas ciertamente continúa en estas galaxias. Nuestro Sistema Solar queda a cerca de dos tercios de la distancia desde el núcleo, en el brazo espiral de la Vía Láctea, llamado el Brazo Espiral de Sagitario. Las estrellas de la constelación de Sagitario, todas están en este brazo espiral de la Vía Láctea.
• Las galaxias elípticas también tienen una estructura característica, pero son muy diferentes de las espirales. Estas galaxias pueden tener formas desde casi esféricas hasta forma de cigarro. A diferencia de las espirales, no hay mucho gas y polvo en las elípticas con el que se puedan hacer nuevas estrellas. El color rojo de las galaxias elípticas dice a los astrónomos que la formación de estrellas ha terminado en estas galaxias, y las estrellas en ellas son antiguas.
• Las galaxias irregulares no tienen una estructura definida. Frecuentemente, las galaxias irregulares son pequeños satélites de galaxias mayores. La Gran y Pequeña Nubes Magallánicas, satélites de la Vía Láctea, son galaxias irregulares.
• Las galaxias mismas están también sujetas al poder universal de la gravedad. la Vía Láctea está en un grupo de galaxias levemente unidas, apropiadamente llamado el Grupo Local. Junto con la Vía Láctea, el Grupo Local contiene a la galaxia espiral gigante de Andrómeda y algunas pequeñas galaxias elípticas.
• En los grupos mayores de galaxias, llamados cúmulos, las galaxias están tan densamente empacadas, que están interactuando gravitacionalmente entre ellas. El cúmulo más cercano al Grupo Local es llamado el Cúmulo de Virgo, porque desde nuestro punto de vista en la Tierra parece estar dentro de la constelación de Virgo. Cúmulos y grupos menores de galaxias frecuentemente están unidos en aún mayores estructuras, formando supercúmulos. El supercúmulo en el que reside nuestro Grupo Local contiene al Cúmulo de Virgo y a otros cúmulos menores.
• El estudio de las galaxias está dentro del campo de la cosmología, el estudio de la evolución del universo en su mayor escala. Observando la distribución de las galaxias en el espacio, Edwin P. Hubble descubrió que el universo está en expansión. Hubble encontró que todas las galaxias en todas las direcciones están alejándose de nosotros, y que las más lejanas se alejan más rápido.
• Investigaciones desde los tiempos de Hubble han aumentado los tipos de galaxias conocidos. Extrañas, inusualmente activas galaxias, y galaxias ténues, azules, de forma extraña han sido descubiertas. Las galaxias activas, se piensa que son energizadas por agujeros negros en sus núcleos.


Características más importantes del medio interestelar.

En astronomía, el medio interestelar, o ISM por sus siglas en inglés, es el contenido de materia y energía que existe entre las estrellas dentro de una galaxia. El medio interestelar desempeña un papel crucial en astrofísica a causa de su situación entre las escalas estelar y galáctica. Las estrellas se forman dentro de regiones frías de medio interestelar, al tiempo que éstas reponen materia interestelar y energía a través de los vientos estelares y las explosiones de supernova. Esta interacción entre estrellas y materia interestelar fija el porcentaje en que una galaxia reduce su contenido gaseoso y por tanto determina la vida de la
formación estelar activa.
El medio interestelar está formado por un plasma extremadamente diluido para los estándares terrestres. La densidad de materia va desde un exiguo 1.5•10-26 g cm-3 en las zonas más calientes hasta un 2•10-18 g cm-3 en las más densas. Su densidad media es de 2.7•10-24 g cm-3, lo que equivale a un átomo de hidrógeno por centímetro cúbico aproximadamente. Dicho medio lo conforman tres constituyentes básicos: materia ordinaria, rayos cósmicos y campos magnéticos.
El medio en sí es una mezcla heterogénea de átomos, moléculas, polvo y rayos cósmicos envueltos en un campo magnético. La materia está compuesta a su vez de alrededor de un 99% en masa por partículas de gas y un 1% por polvo. La composición química del gas, de acuerdo a la nucleosíntesis primordial, es de un 90.8% en número (70.4% en masa) de hidrógeno, un 9.1% (28.1%) de helio y un 0.12% (1.5%) de elementos más pesados, comunmente llamados metales en la jerga astrofísica. Una fracción significativa de estos metales condensan en forma de granos de polvo en las regiones más densas y frías del medio interestelar.
La presencia del oscurecimiento interestelar dio a William Herschel y a Jacobus Kapteyn la falsa impresión de que nuestro Sistema Solar se encontraba cerca del centro de la galaxia. Sin embargo dicho oscurecimiento lo producen las nubes de gas y polvo que se interponen en el recorrido de la luz de las estrellas y nuestro sistema planetario. Es lo que se denomina extinción estelar. Este decaimiento de la intensidad lumínica de las estrellas al ser atravesado por la luz es causado por la absorción de fotones a ciertas longitudes de onda.
Por ejemplo, la longitud de onda típica de absorción del hidrógeno atómico se encuentra a unos 121,5 nanómetros, la transición Lyman-alfa. Por tanto, es casi imposible ver la luz emitida en esta longitud de onda por una estrella, porque gran parte es absorbida durante el viaje a la Tierra. Asimismo, la absorción causada por las nubes de polvo se da, sobre todo, a longitudes de onda cortas, es decir que el azul se absorbe mejor que el rojo. Esto produce un efecto de enrojecimiento (reddening en inglés) de la luz, más intenso cuanto más lejana sea la posición de la fuente. Este es uno de los motivos por los cuales los telescopios de infrarrojos permiten ver mejor a través de dichas nubes.
Otro efecto interesante es la polarización lineal de la luz que es debida a que los granos de polvo no son esféricos sino ligeramente alargados por lo que los campos magnéticos tienden a alinearlos a lo largo de sus líneas de campo. La manifestación de dicho efecto puso en evidencia la existencia de campos magnéticos coherentes en el medio interestelar.
El medio interestelar suele dividirse en tres fases, dependiendo de la temperatura del gas: muy caliente (millones de kelvins), caliente (miles de kelvins), y frío (decenas de kelvins).
Características importantes del estudio del medio interestelar incluyen nubes moleculares, nubes interestelares, restos de supernovas, nebulosas planetarias, y estructuras difusas parecidas.


nebulosa planetaria


Una nebulosa planetaria es una nebulosa de emisión consistente en una envoltura brillante en expansión de plasma y gas ionizado, expulsada durante la fase de rama asintótica gigante que atraviesan las estrellas gigantes rojas en los últimos momentos de sus vidas.


agujeros negros

El nombre de oyo negro o agujero negro fue inventado por el astrofísico John Wheeler en 1969 para describir cierto tipo de objeto astrofísico. Desde entonces, dicha expresión se ha usado frecuentemente como metáfora, a menudo inapropiadamente. Estos enigmáticos objetos también se han convertido en estrellas de la literatura fantástica y de ciencia ficción, sin duda gracias a su sugestivo nombre y sus extrañas propiedades. Quien sienta curiosidad acerca de este tema posiblemente se haya topado con misteriosos embudos, túneles del tiempo, singularidades y otras temibles aberraciones. Muchas pretendidas obras de divulgación parecen más relatos fantásticos que intentos de explicar un concepto esencialmente simple.
 




Estrellas variables:


Las estrellas variables son estrellas que experimentan una variación en su brillo en el transcurso del tiempo. Algunas son muy conocidas y son el "prototipo" de una clase de variables, como Algol (Beta Persei), algólidas, Mira (Tau Ceti), tipo Mira, Delta Cephei, cefeidas.

La mayoría de las estrellas tienen una luminosidad prácticamente constante. El Sol, nuestra estrella más cercana, es un buen ejemplo de esos astros que experimentan poca variación (usualmente sólo un 0.1% dentro de su ciclo solar, que dura 11 años). Sin embargo, muchas otras estrellas experimentan variaciones significativas de luminosidad, por lo cual son conocidas como estrellas variables.
Las estrellas variables de una constelación se denominan por el orden de descubrimiento si no tienen nombre propio. Si no es así se nombrarán con el alfabeto desde la R a Z, y si hay más se colocará doble letra: RR, RS, RT... ZZ. Si estas resultaran cortas, se haría el procedimiento de doble letra desde a la A a P, eliminando J. Esto hace un total de 334 estrellas, si hubiera más, se llamaría V, seguido del número de descubrimiento y el genitivo de la constelación.

CARACTERÍSTICAS: interesa conocer como es el cambio de su magnitud durante el trascurso de tiempo en que es detectada esa variación, la representación grafica de las fluctuaciones de brillo con respecto al tiempo se denomina curva de luz de la estrella.
Si la magnitud es variable, el intervalo de tiempo empleado por la estrella en repetir su máximo o mínimo brillo, se denomina periodo. La amplitud de la variación luminosa la diferencia entre la magnitud en el máximo y en el mínimo.

CLASIFICACIÓN: las estrellas variables se clasifican en.
Éstas pueden ser intrínsecas o extrínsecas.
• Estrellas variables intrínsecas: son aquellas en las que la variabilidad es causada por cambios en las propiedades físicas de las propias estrellas. Esta categoría puede dividirse en tres subgrupos:
o Variables pulsantes: aquellas cuyo radio se expande y se contrae como parte de su proceso evolutivo natural.
o Variables eruptivas: aquellas que experimentan erupciones en sus superficies, como llamaradas o eyecciones de materia.
o Variables cataclísmicas: aquellas que experimentan algún cambio cataclísmico de sus propiedades físicas, como las novas y las supernovas.
• Estrellas variables extrínsecas: son aquellas en las cuales la variabilidad es causada por propiedades externas, como la rotación o eclipses. Existen dos subgrupos dentro de esta categoría:
o Binarias eclipsantes: aquellas en las cuales, según se ven desde la Tierra, una estrella del par eclipsa a la otra ocasionalmente debido a su traslaciones orbitales.
o Variables rotantes: aquellas cuya variabilidad es causada por algún fenómeno relacionado con su propia rotación. Se dan casos de estrellas con manchas solares de proporciones extremas, que afectan su brillo aparente, o estrellas que, por tener una velocidad de rotación muy elevada, tienen forma elipsoidal.
Estos sugrupos se pueden dividir en varios tipos más específicos, los cuales generalmente obtienen su designación del nombre de la estrella prototípica. Por ejemplo, las novas enanas son llamadas estrellas U Geminorum, pues la primera estrella de este tipo en ser identificada fue U Geminorum.


Resumen esquemático sobre la evolución estelar.

En astronomía, se denomina evolución estelar a la secuencia de cambios que una estrella
experimenta a lo largo de su existencia.
Durante mucho tiempo se pensó que las estrellas eran enormes bolas de fuego perpetuo. En el siglo XIX aparecen las primeras teorías científicas sobre el origen de su energía: Lord Kelvin y Helmholtz
propusieron que las estrellas extraían su energía de la gravedad contrayéndose gradualmente. Pero dicho mecanismo habría permitido mantener la luminosidad del Sol durante únicamente unas decenas de millones de años, lo que no concordaba con la edad de la Tierra medida por los geólogos, que ya entonces se estimaba en varios miles de millones de años. Esa discordancia llevó a la búsqueda de una fuente de energía distinta a la gravedad; en la década de 1920 Sir Arthur Eddington propuso la energía nuclear como alternativa. Hoy en día sabemos que la vida de las estrellas está regida por esos procesos nucleares y que las fases que atraviesan desde su formación hasta su muerte dependen de las tasas de los distintos tipos de reacciones nucleares y de cómo la estrella reacciona ante los cambios que en ellas se producen al variar su temperatura y composición internas. Así pues, la evolución estelar puede describirse como una batalla entre dos fuerzas: la gravitatoria, que desde la formación de una estrella a partir de una nube de gas tiende a comprimirla y a conducirla al colapso gravitatorio, y la nuclear, que tiende a oponerse a esa contracción a través de la presión térmica resultante de las reacciones nucleares. Aunque finalmente el ganador de esta batalla es la gravedad (ya que en algún momento la estrella no tendrá más combustible nuclear que emplear), la evolución de la estrella dependerá, fundamentalmente, de su masa inicial y, en segundo lugar, de su metalicidad y su velocidad de rotación así como de la presencia de estrellas compañeras cercanas.

las estrellas de neutrones





Una estrella de neutrones es un remanente estelar dejado por una estrella supergigante después de agotar el combustible nuclear en su núcleo y explotar como una supernova tipo II, tipo Ib o tipo Ic. Como su nombre lo indica, estas estrellas están compuestas principalmente de neutrones, más otro tipo de partículas tanto en su corteza sólida de hierro, como en su interior, que puede contener tanto protones y electrones, como piones y kaones. La masa original de la supernova debe ser mayor a 9 ó 10 masas solares y menor que un cierto valor que depende de la metalicidad. Las estrellas con masas menores a 9-10 masas solares evolucionan en enanas blancas envueltas, al menos por un tiempo, por nebulosidades (nebulosas planetarias), mientras que las de masas mayores evolucionan en agujeros negros.
Una estrella de neutrones típica tiene una masa entre 1,35 y 2,1 masas solares y un radio de entre 20 y 10 km (análogamente a lo que ocurre con las enanas blancas, a mayor masa corresponde un menor radio).


la masa de las estrellas

La masa de una estrella es la cantidad de gramos de materia que posee. Es un número difícil de obtener, ya que la luz que recibimos de los astros no nos dice nada acerca de ese valor. Hasta hoy ha resultado imposible determinar la masa de una estrella en forma tan directa y precisa como lo hacemos con el sol.

la estructura interna de las estrellas

Para conocer las condiciones para la estabilidad de una estrella es importante conocer cuál es el proceso que le permite a estos astros generar anergia y también entender las causas por si continuidad durante un lapso prolongado. La energía estelar es el resultado de TRANSFORMACIONES NUCLEARES que se efectúan en el núcleo. Se debe estudiar la estructura interna de las estrellas

el interior de las estrellas

Desde la Tierra solo es posible observar una porción de la superficie de las estrellas. Para resolver el problema debe tenerse en cuenta toda la información que pueda obtenerse del estudio de las estrellas: forma, dimensiones, movimiento, energía irradiada, temperatura, masa y composición química. Además las leyes físicas son indispensables para construir un modelo de estructura interna.

estimación  del tiempo de vida de una estrella

TIEMPO DE VIDA DE UNA ESTRELLA: t (años)= 10 elevado a la 10.Masa/ luminosidad.
Queda expresada la relación proporcional entre la edad y la masa e inversamente proporcional con la generación de energía.

la temperatura superficial de las estrellas
Es posible calcular la temperatura superficial de las estrellas mediante la explicación de las leyes de radiación: la ley de WIEN presenta problemas debido al intervalo de longitud de onda. La ley de STEFAN-BOLTZMANN se emplea cuando se conoce la distancia y dimensiones de las estrellas. La ley de BLANK es la más utilizada para determinar temperatura por intermedio de colores.

La temperatura superficial de una estrella se puede establecer midiendo la distribución de la intensidad del fondo continuo del espectro. Según una ley descubierta por W. Wien en el siglo XIX, la longitud de onda del máximo de intensidad es inversamente proporcional a la temperatura absoluta de la fuente. En rigor, la ley de Wien sólo es válidad para la radiación emitida por un cuerpo ideal denominado cuerpo negro, que absorbe toda la radiación que recibe y que sirve a los físicos como referencia.
El nombre de "cuerpo negro" se debe a la idea de que cuando no está suficientemente caliente para emitir luz propia, el cuerpo aparece negro, sin embargo, las estrellas normales (excluidas las novas , las estrellas neutrónicas , etc) se comportan aproximadamente como cuerpos negros.
Para establecer la longitud de onda que corresponde al máximo no hace falta medir la intensidad a lo largo de todo el espectro; basta medirla en dos longitudes de onda y calcular la posición del máximo a partir de la relación entre estas dos intensidades. En la práctica, se determina el índice de color (B-V) que, como se sabe, es la relación entre la intensidad en el azul (B) y en la lua amarilla (V), expresada como diferencia de magnitud.
Una sencilla fórmula permite pasar del índice de color a la temperatura, que así calculada recibe el nombre de temperatura de color.

principales criterios de la clasificación espectral.

Clasificación de los espectros estelares

Una de las maneras de clasificar las estrellas es por medio de su espectro. Esta clasificacion fue desarrollada inicialmente en la Universidad de Harvard, y posteriormente se fue perfeccionando hasta llegar a la actual clasificación completa.

B-V es el indice de color (diferencia entre la mag azul y mag visual de la estrella).
Clasificación de los espectros estelares
Las estrellas se clasifican según su temperatura, de las más calientes a las más frías como:
Tipos               O          B          A          F          G          K         M


diagrama de Hertzprung–Russell

Es un grafico bidimensional que representa la relación entre el índice de calor de una estrella (sobre las abscisas, aumentando hacia la derecha), por esta razón se lo conoce también como diagrama color- magnitud debido a la relación que existe entre índice de color, temperatura efectiva y tipo espectral, cualquiera de ellos puede usarse indistintamente sobre el eje de las abscisas.
NUESTRO UNIVERSO.

forma general una estrella.
Una estrella es un gran cuerpo celeste compuesto de gases calientes que emiten radiación electromagnética, en especial luz, como resultado de las reacciones nucleares que tienen lugar en su interior. El Sol es una estrella. Con la única excepción del Sol, las estrellas parecen estar fijas, manteniendo la misma forma en los cielos año tras año. En realidad, las estrellas están en rápido movimiento, pero a distancias tan grandes que sus cambios relativos de posición se perciben sólo a través de los siglos.


sistemas estelares
Un sistema estelar (binario o múltiple) es la agrupación de dos o más estrellas que orbitan en torno a un centro de gravedad común,1 ligadas por lo tanto por la fuerza de gravedad. Un gran número de estrellas vinculadas por la gravitación se denomina uncúmulo estelar o una galaxia, si bien, en un sentido extenso ambos son sistemas estelares.

agrupaciones estelares
Son grupos de estrellas ligadas entre sí por la gravedad. A veces también las liga su origen.
Se los suele llamar cúmulos estelares. Hay abiertos y cerrados.

las asociaciones
Son grupos de estrellas con características físicas similares y que se encuentran reunidas en una cierta región del espacio.Tienen una densidad bastante menor y no están caracterizados por una estructura particular.